

Bologna November 13-14 2023

Royal Hotel Carlton

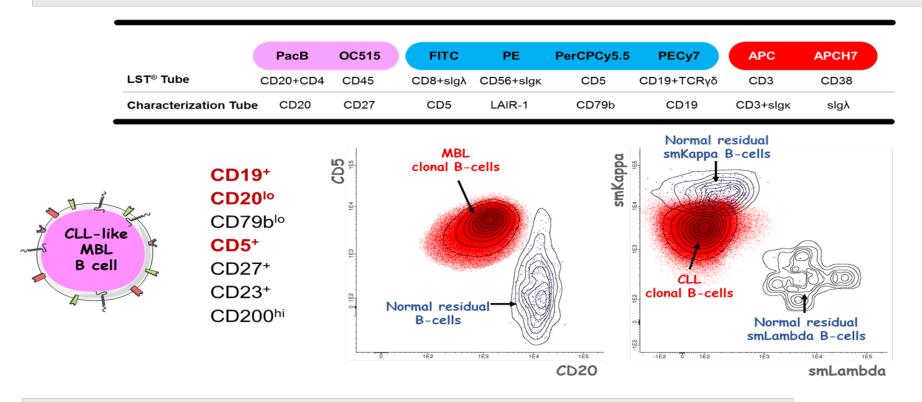
President:

Pier Luigi Zinzani

Monoclonal B- cell Lymphocytosis(MBL): low vs high count

Alberto Orfao

Cancer Research Center, IBSAL, University & University Hospital of Salamanca, Spain


4th Postgraduate CLL Conference (International Blood Cancer) Bologna (Italy), 13th of November, 2023

Disclosures of Name Surname

Company name	Research support	Employee	Consultant	Stockholder	Speakers bureau	Advisory board	Other
Astra Zeneca					х		
Amgen					x		
BluePrint Medicines	x				x	X	
Janssen					x		
Becton/Dickinson					х	X	x
ImmunoStep SL						х	x
300 K Biotech Solutions						х	x

MONOCLONAL B CELL LYMPHOCYTOSIS (MBL)

- Monoclonal B-cell Lymphocytosis (MBL) indicates the presence of <5x10⁹ clonal B-cells/L in PB of otherwise healthy subjects, with or without lymphocytosis (ICD-O Codes: 9823/1 for CLL type MBL and 9591/1 for Non-CLL type MBL)

Typical CLL-like CD5*:

-CD20lo,CD79lo,sIglo

Atypical CLL-like CD5+:

-CD20hi or CD79hi or slghi

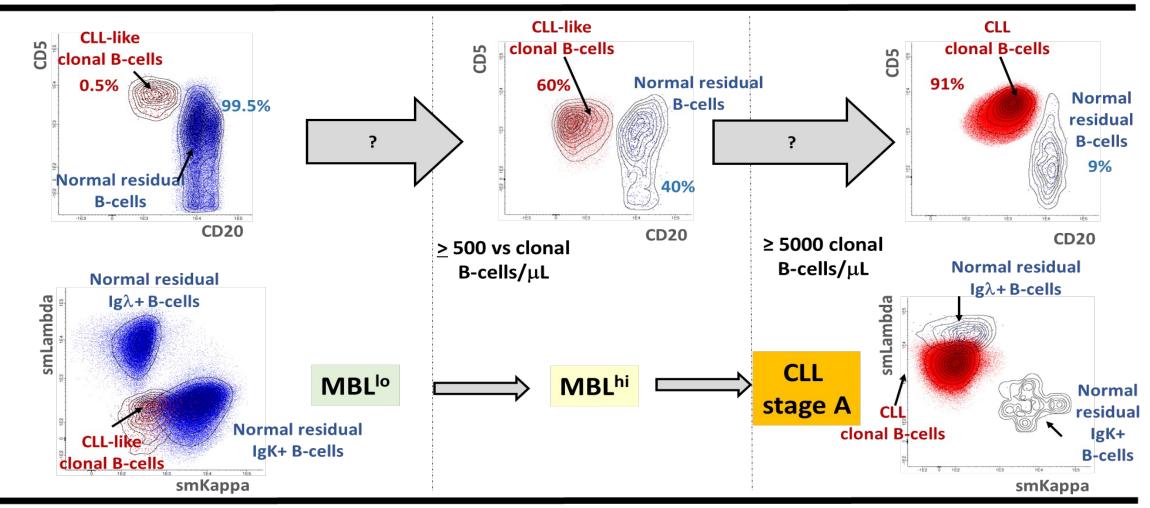
Non-CLL-like CD5

Marti et al, Br J Haematol 2005, 130: 325-32; Swerdlow et al, Blood 2016, 127: 2375-90

MONOCLONAL B CELL LYMPHOCYTOSIS (MBL): SUBTYPES

WHO 2022 Classification of MBL

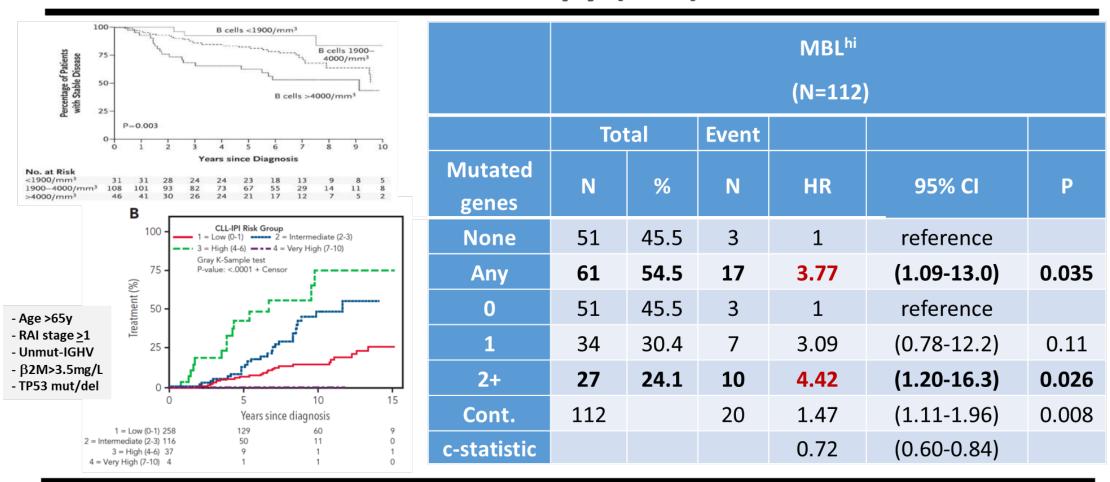
Mature B-cell neoplasms	
Pre-neoplastic and neoplastic small lymphocytic proliferations	
Monoclonal B-cell lymphocytosis	(Same)
Chronic lymphocytic leukaemia/small lymphocytic lymphoma	(Same)
(Entity deleted)	B-cell prolymphocytic leukaemia


Pre-neoplastic and neoplastic small lymphocytic proliferations: MBL and CLL/SLL remain; B-PLL is no longer recognized as an entity

This family comprises two entities: Monoclonal B-cell Lymphocytosis (MBL) and Chronic Lymphocytic Leukaemia/Small Lymphocytic Lymphoma (CLL/SLL). WHO-HAEM5 recognizes three subtypes of monoclonal B-cell lymphocytosis (MBL):

- a. Low-count MBL or clonal B-cell expansion: clonal CLL/SLL-phenotype B-cell count below 0.5 x 10⁹/L with no other features diagnostic of B-lymphoproliferative disorder. The arbitrary threshold is based on the distribution of clonal B-cell counts in population studies compared to clinical cohorts [29].
- b. CLL/SLL-type MBL: monoclonal CLL/SLL-phenotype B-cell count ≥0.5 x 10⁹/L and total B-cell count less than 5 x 10⁹/L with no other features diagnostic of CLL/SLL [30]. The threshold of less than 5 x 10⁹/L is arbitrary but identifies a group with a very low likelihood of requiring treatment compared to individuals with B-cell counts between 5–10 x 10⁹/L [31].
- c. non-CLL/SLL-type MBL: ANY monoclonal non-CLL/SLL phenotype B-cell expansion with no symptoms or features diagnostic of another mature B-cell neoplasm. The majority of cases have features consistent with a marginal zone (MZ) origin [32].

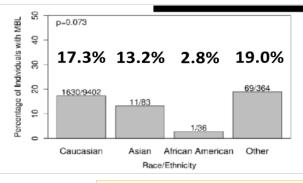
Alaggio et al, Leukemia 2022, 36: 1720-48


CLASSIFICATION OF MBL^{lo} vs MBL^{hi} vs STAGE A CLL relies on clonal B-cell counts

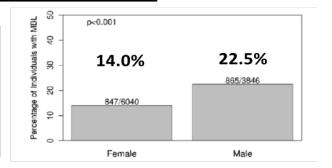
Population-based (flow cytometry) studies

Routine-blood (lymphocyte) count at primary vs hospital health care

MBLhi clones with higher mutational load show shorter time to therapy (TTT)

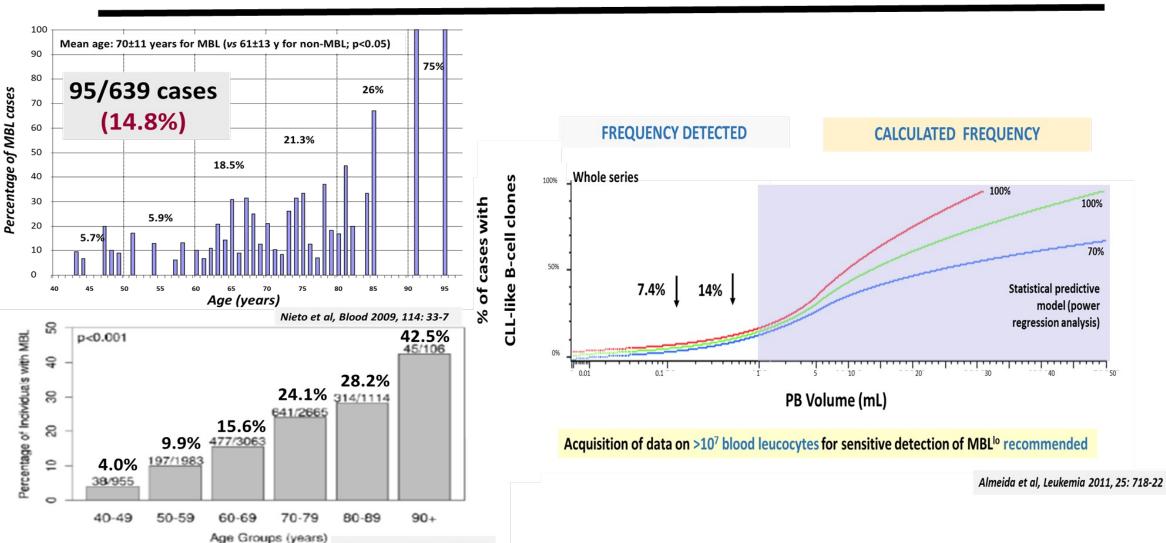


Rawstron et al, N Eng J Med, 2008, 359: 575-82; Parikh et al, Blood 2021, 138: 149-59


Kleinstern et al, Am J Hematol, 2020; 95: 906-17 (Suppl material)

PREVALENCE OF MBL IN THE GENERAL POPULATION*

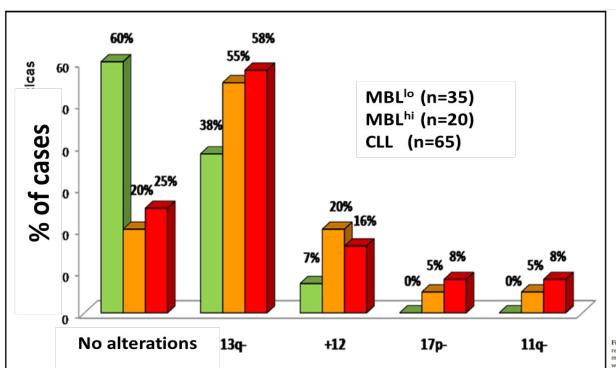
	Europe/USA	Japanese (living in Brazil)	UAE	Uganda	Mexico
MBL ^{lo} :	3.5%-17%	7.7%-10%	5.8%	14%	9.4%
CLL-lik	e 85%**	100%	48%	3%	NA
Non-C	LL 15%	0%	52 %	97%	NA

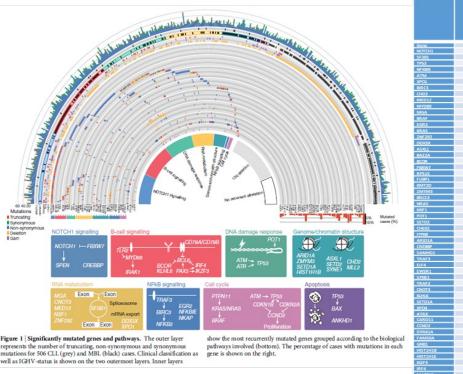

- MBL in relatives of sporadic CLL patients: 5%-14%
- MBL in relatives of familial CLL patients: 14%-18%
- MBL in patients with lymphocytosis: 3%-14%

MBL^{lo}: 245/1094 (22%) vs MBL^{hi}: 22/1094 (2%) vs CLL: 2/1094 (0.18%)

^{*}Two hospital-based studies on adults with lymphocytosis in China -n=14/254 (5.5%); 4/14 CLL (1.6%) and 10/14 (3.9%) MBL: 2/10 (20%) CLL-like MBL- and South Korea -3/105 (2.9%): 2/3 (67%) CLL-like MBL-; ** similar distribution in tissue (53 LN, spleen) as described by Habermehl et al, Pathol Arch Lab Med 2020. Rawstron et al, Blood 2002; Ghia et al, Blood, 2004; Rachel et al, Br J Hematol, 2007; Nieto et al, Blood, 2009; Shim et al, Blood 2014; Rawstron et al, Lancet Hematol, 2017; Rodriguez-Preciado et al, Int J Immunogen, 2017; Faria-Moss et al Haematologica 2020; Xu et al, BMJ Open, 2020; Yoo et al, Ann Lab Med 2020; Slager et al, Blood 2022

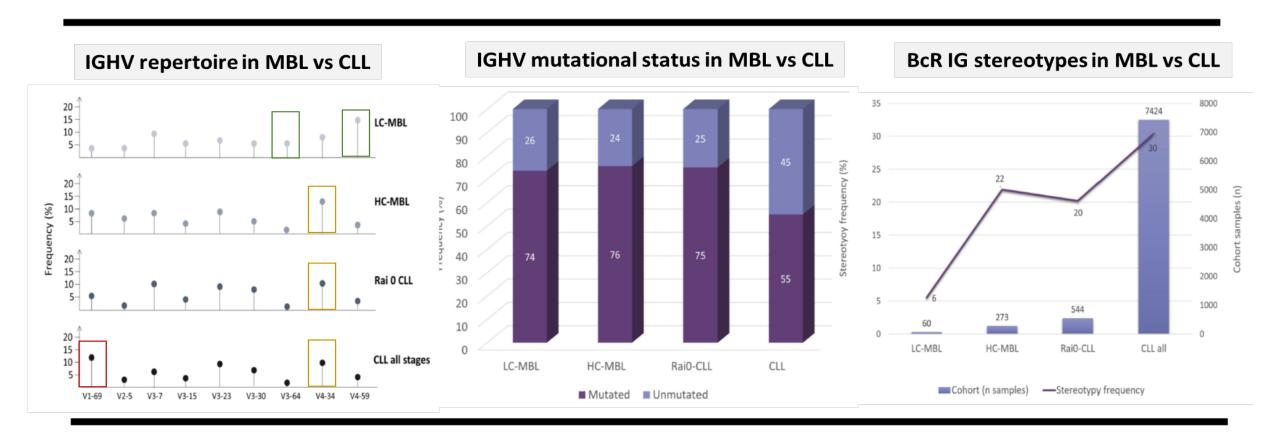
Frequency of MBL in blood of (healthy) adults




Slager et al, Blood 2022

Cytogenetic profile of CLL-like MBLlo vs MBLhi vs CLL

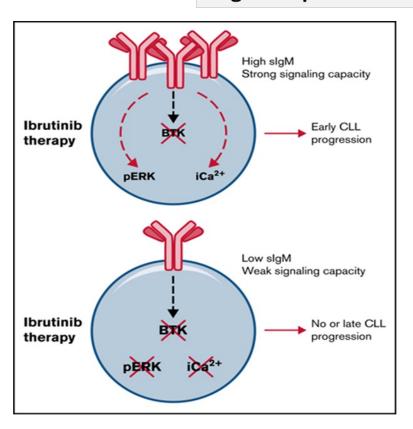
HC MBL

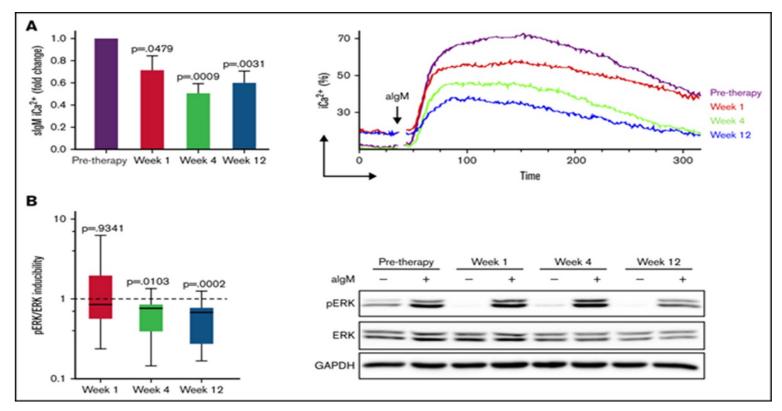


The genetic/molecular profile of clonal B-cells in MBL^{lo} and MBL^{hi} overlaps with that of overt CLL in the absence of a (single) common genetic driver

Nieto et al Blood 2009 114: 33-7; Criado et al, Haematologica 2018, 103: 1198-208; Kleinstern et al, Am J Hematol 2020, 95: 906-017; Puente et al, Nature 2015, 526: 519-24

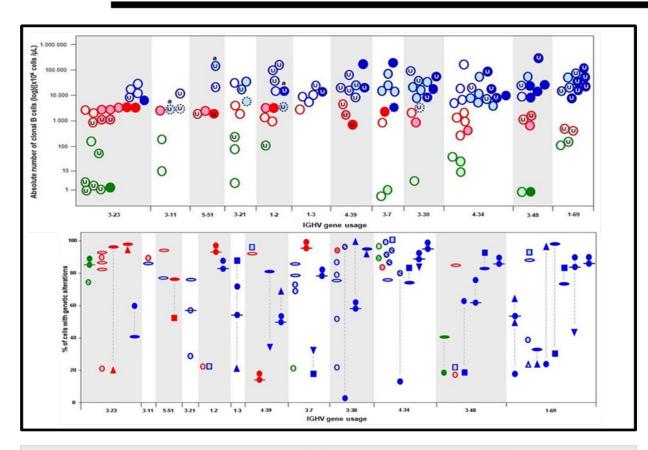
ONTOGENY OF MBL AND CLL: role of BCR (signaling)

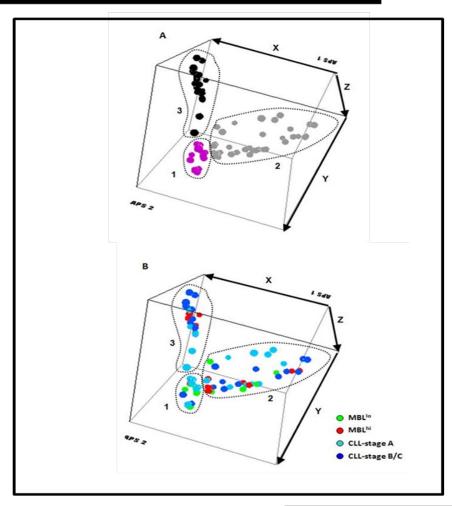



The frequency of cases with > 2 B-cell clones decreases from MBL^{lo} (12%-19%) to MBL^{hi} (2.9%-13%) and CLL patients (0.7%-3.5%)

Vardi et al, Blood 2013, 121: 4521-5; Galigalidou et al, Front Oncol 2021, 11: e769612; Faria Moss et al, Haematologica 2020,105: e298-301.

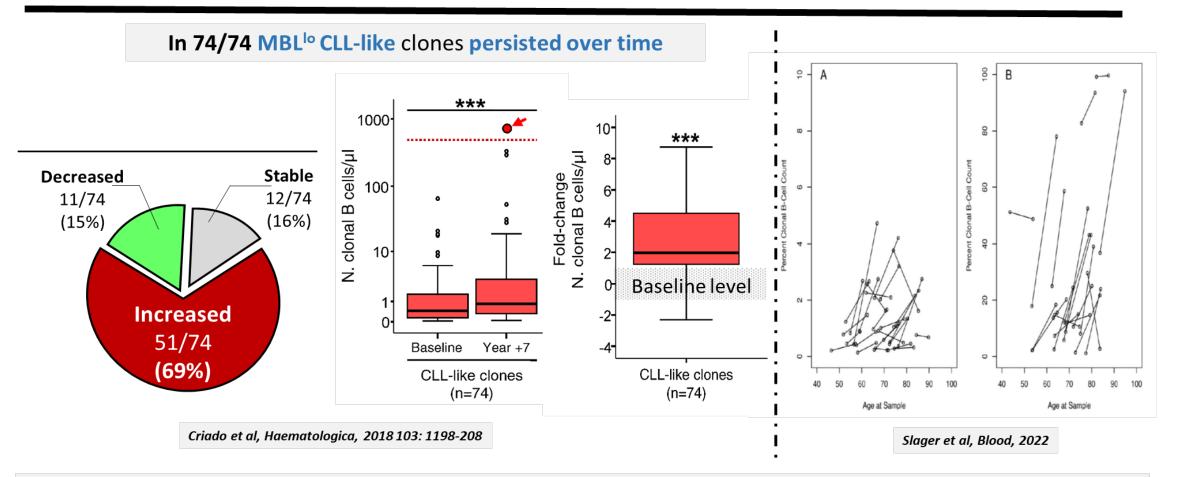
ONTOGENY OF MBL AND CLL: role of BCR and not TLR (signaling) in CLL


Higher expression of SIgM translates into higher BCR signaling and lower BTK



Chiodin et al, Blood Adv 2022, 6: 5494-504; Martines et al, Blood 2022, 140: 2335-47

Immunogenotypic and molecular/cytogenetic patterns of MBL^{lo} vs MBL^{hi} vs CLL

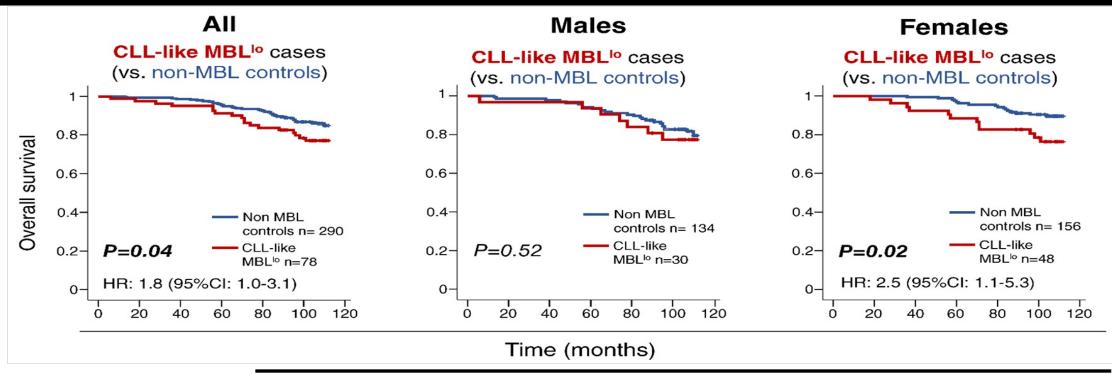


There is a significant association between the IGHV repertoire and the cytogenetic/molecular profiles of clonal B-cells in the different entities

Henriques et al, PlosONE 2013

Low-count MBL persists after 7 years of follow-up

In MBL^{Io} CLL-like clones persisted over time and double their numbers after 7y of follow-up with a very low rate (1-2% at 7 years follow-up) of progression to MBL^{II} and to CLL (<0.1% per year)


CLL-like MBL^{lo} clones acquire additional cytogenetic alterations after 7 years of follow-up

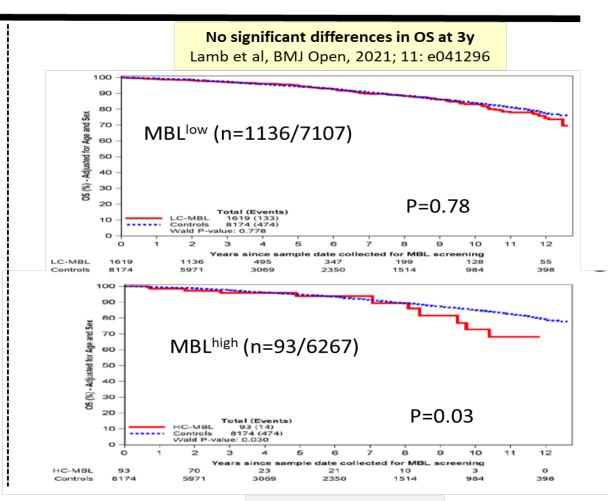
ALL CLL-like MBL ^{lo} CASES	BASELINE	7y FOLLOW-UP	<u>P-valu</u> e	
Altered/total cases (%)	7/24 (29%)	31/50 (62%)	0.01	
del13q14(D13S25)	6/20 (30%)	27/48 (56%)	0.06	
Trisomy 12	1/19 (5.3%)	1/49 (2%)	NS	
del11q(<i>ATM</i>)	0/10 (0%)	0/48 (0%)	NA	
del17p(<i>TP53</i>)	0/8 (0%)	1/48 (2.1%)	NS	
del/t14q32	NA	5/23 (22%)	NA	

PAIRED CLL-like MBL ^{lo} SAMPLES	BASELINE	7y FOLLOW-UP	P-value
del13q14(<i>D13S25</i>)	4/14 (29%)	8/14 (57%)	0.04
Trisomy 12	1/13 (7.7%)	1/13 (7.7%)	NS
del11q(<i>ATM</i>)	0/8 (0%)	0/8 (0%)	NA
del17p(<i>TP53</i>)	0/7 (0%)	0/7 (0%)	NS

Criado et al, Haematologica, 2018; 103: 1198-208

MBL^{lo} in healthy subjects is associated with shorter survival

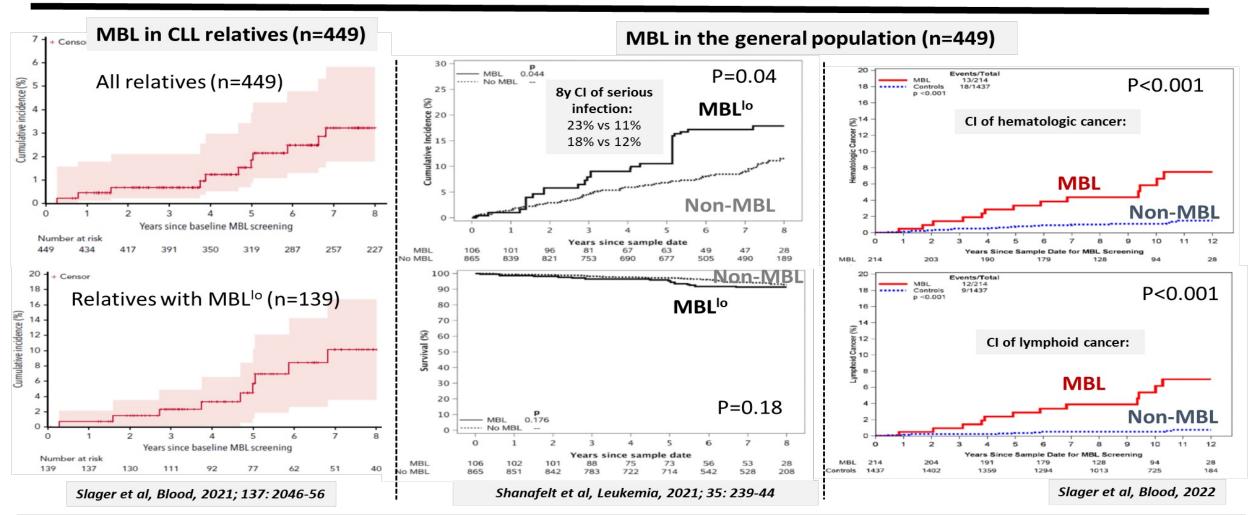
No significant differences in OS at 3y Lamb et al, BMJ Open, 2021; 11: e041296


	Cardiovascular disease	Cancer#	Infection	Other#
CLL-like MBL ^{lo}	29%	36%	21%	14%
General population*	33%	26%	1.4%	39.6%

^{*}Data obtained from INE databases.
#Infection was the direct cause of death in one individual in these groups.

Criado et al, Haematologica, 2018; 103: 1198-208

Impact of low-count MBL on outcome in the general population: multivariate and confirmatory analyses


riables	HR (95%CI)	P-value
hole cohort (men plus women)		
Cardiovascular disease	2.65 (1.30 - 5.41)	0.007
Age (<65y vs. ≥65y)	5.08 (1.48 - 17.49)	0.01
Solid tumor	2.86 (1.26 - 6.46)	0.01
MBL ^{lo} clones	2.14 (0.97 - 4.72)	0.06
en		
Cardiovascular disease	4.43 (1.41 - 13.91)	0.01
omen		
Hypertension	6.84 (1.51 - 30.93)	0.01
Cardiovascular disease	5.95 (1.35 - 26.19)	0.02
MBL ^{lo} clones	6.50 (1.34 - 31.49)	0.02
Solid tumor	10.82 (1.44 - 81.42)	0.02
N. of PB monocytes (/μL)	1.01 (1.00 - 1.01)	0.04
Diabetes	5.17 (0.89 - 29.92)	0.07
Severe infections	3.79 (0.88 - 16.27)	0.07

Criado et al, Haematologica, 2018; 103: 1198-208

Slager et al, Blood, 2022

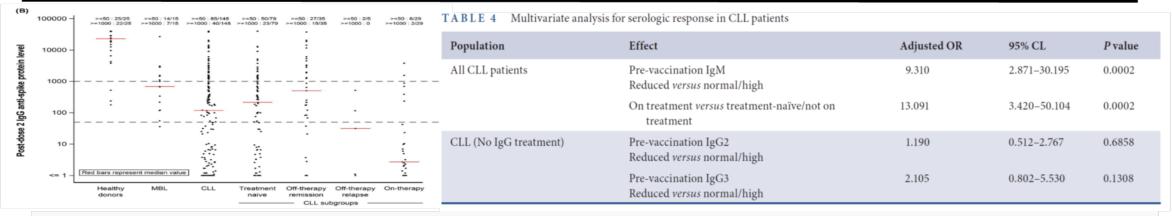
MBL^{lo} in a screening population and CLL relatives: progression to CLL

MBL^{lo} among relatives of familial CLL patients show higher rates of progression to CLL (5.7% at 5 years follow-up), severe infections and hematologic (lymphoid) cancer

Progressively altered B cell and plasma cell subsets from MBL to CLL

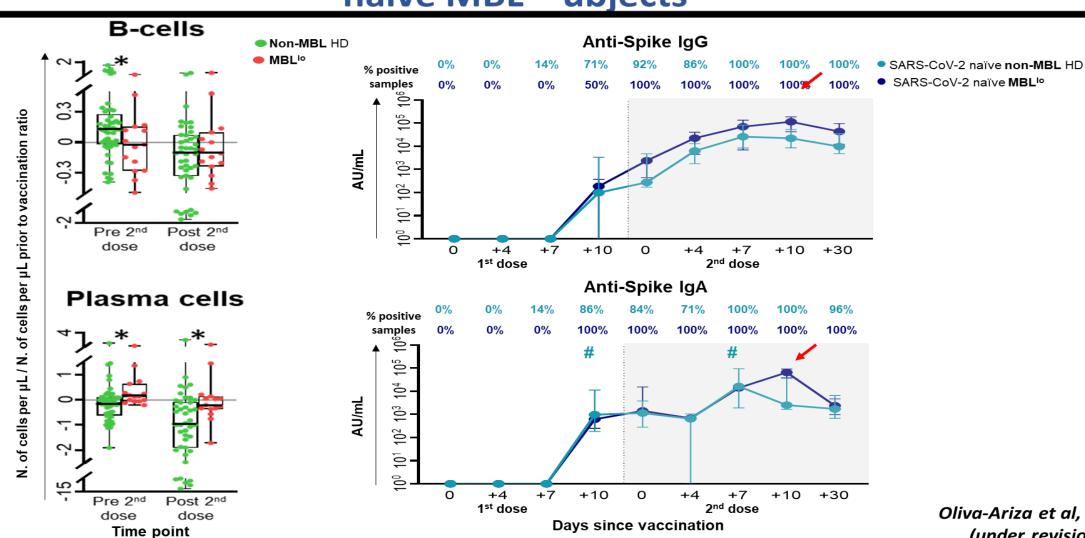
Decreased B-cell production with a potentially narrower B-cell repertoire

Sequential decrease in:

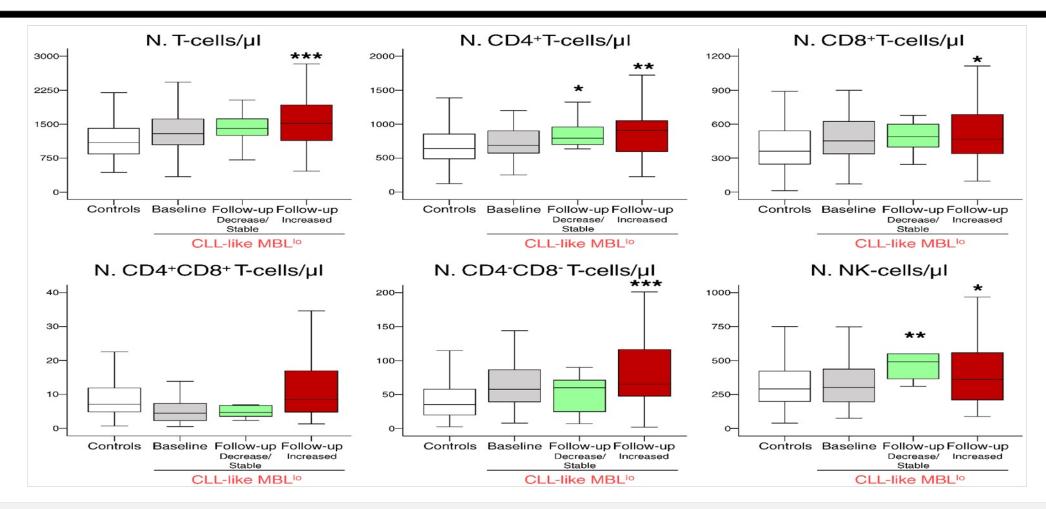

- i) IgM+ PC in MBLIo,
- ii) all PC subsets in MBLhi,
- iii) but only IgG₂₊₄, IgA₂ in stage A CLL

Criado et al, Leukemia 2108, 32: 2701-5

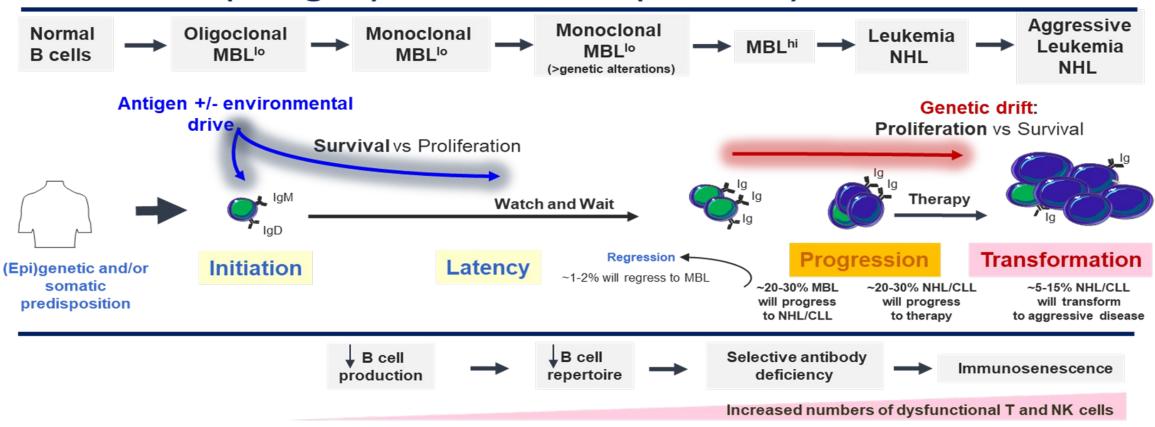
*P-value <0.05, ** P-value <0.01, ***P-value ≤0.001 vs. Controls


SEROLOGIC RESPONSE TO VACCINATION IN MBL + CLL

VACCINE TYPE		DATE	CONTROLS	MBLhi	CLL
Influenza vaccine:	A/H1N1	Day +28	98.8%	69.2%	58.8%
	A/H3N2	Day +28	98.6%	100%	83.3%
	В	Day +28	86.2%	76.9%	17.6%
Herpes zoster (R) v	accine	Month +3	63%	51%	36%*
SARS-CoV-2 vaccin	e 1 st dose	Week +2-4	NR	50.0%	21.8%
(AZ, Mod, Pfizer)	2 nd dose	Week +2-4	NR	90.5%	55.0 %


*BTKi treated CLL vs MBL/untreated CLL; Whitaker et al, Vaccine 2021, 1122-30; Muchtar et al, Am J Hematol, 2021, 97: 90-8; Shen et al, Br J Haematol, 2021

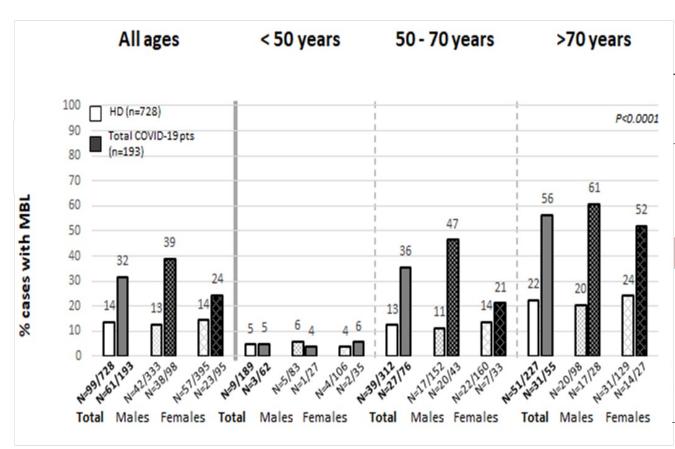
Humoral immune response to SARS-CoV-2 vaccination in COVID-19 naïve MBLlo subjects


Oliva-Ariza et al, 2023 (under revision)

Altered T- and NK- cell counts in MBL^{lo} cases with increased clone size in PB

Increase in PB counts of T and NK cells in CLL-like MBL^{Io} subjects parallel to changes in clone size

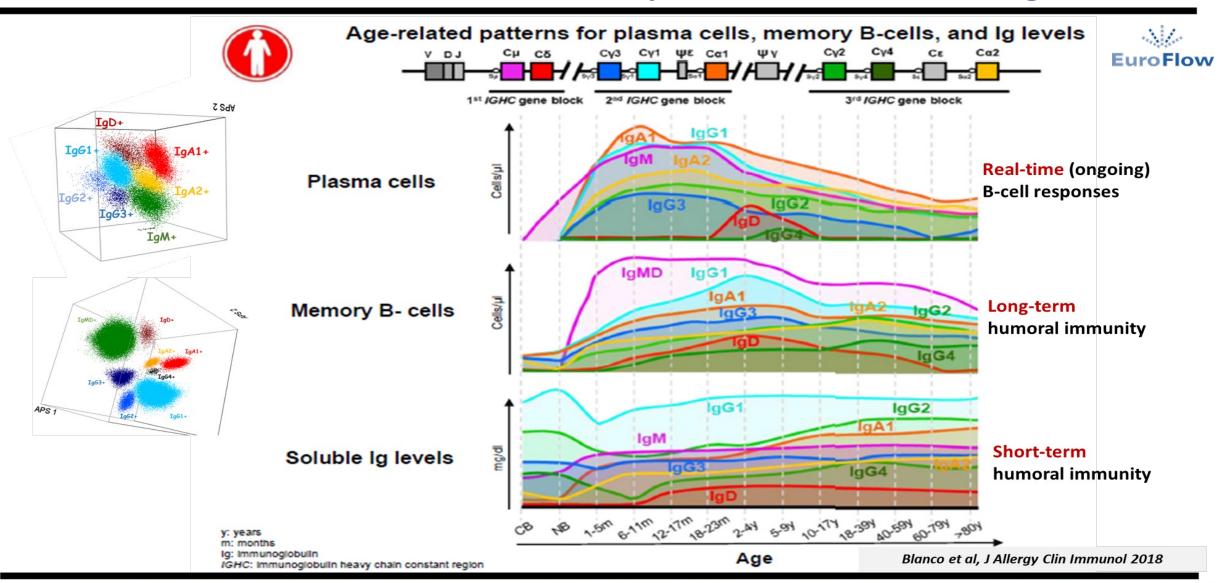
Natural history of MBL is affected by environmental (antigen) and intrinsic (immune) factors


Severe infections + second neoplasias / premature deaths (2/1000 per year)

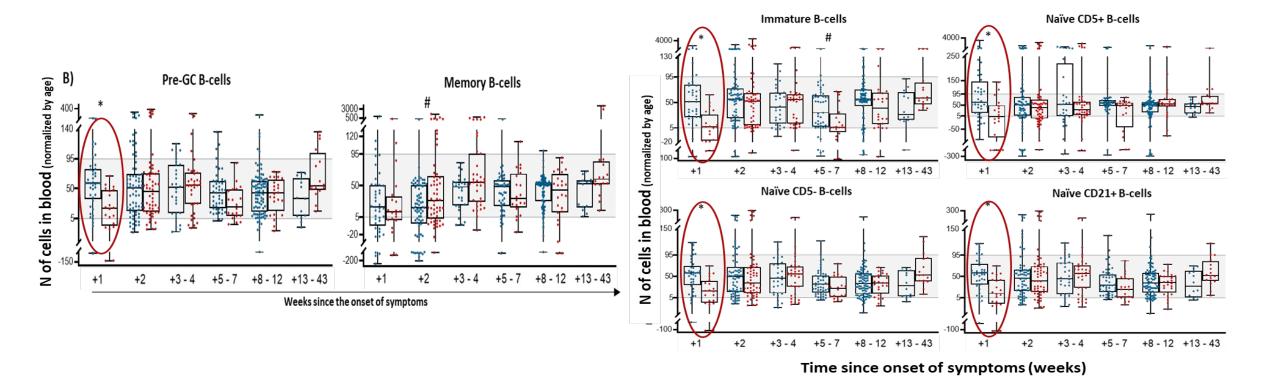
MBL ~3-14% of adults (>40y) — 509.590 NHL/CLL in 2018

Slide prepared by Francesco Forconi

PREVALENCE OF MBL^{Io} IN (HOSPITALIZED) COVID-19 PATIENTS vs THE GENERAL POPULATION

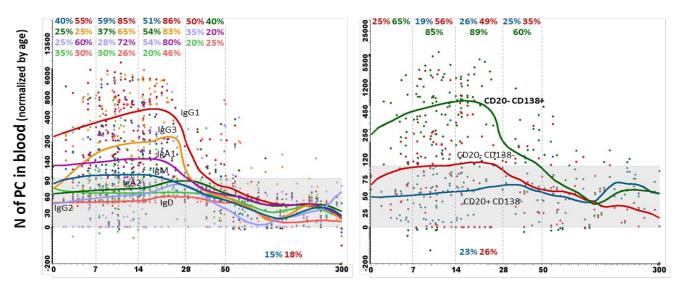


Prediction of mild vs severe COVID-19

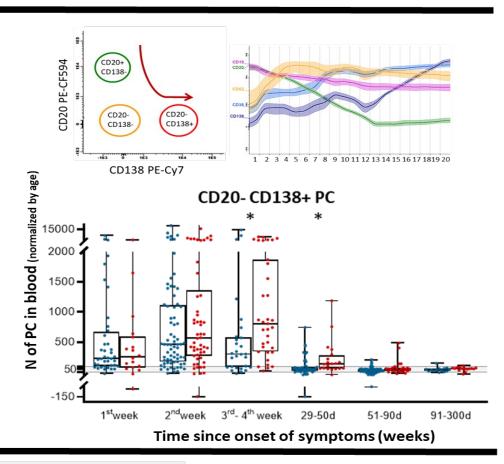

	τ	Jnivariate analysis	Multivariate analysis		
Variables	Non- hospitalized	Hospitaliz ed	P-value	OR (95%CI)	P-value
Sex (male)	42/114 (37%)	91/135 (67%)	<0.0001	2.83 (1.29 – 6.21)	0.01
Dyspnea	36/107 (33%)	95/134 (71%)	<0.0001	4.88 (2.17 – 10.93)	< 0.0001
Fever	56/114 (49%)	104/135 (77%)	<0.0001	3.71 (1.52 – 9.06)	0.004
Presence of MBL ¹⁰	18/114 (16%)	53/135 (39%)	<0.0001	2.97 (1.19 – 7.42)	0.02
Anti-SARS-CoV-2 IgA ≥24 AU/m L	61/114 (54%)	112/134 (84%)	<0.0001	5.36 (2.13 – 13.52)	<0.0001
Eosin ophils <20/μL	17/114 (15%)	71/135 (53%)	<0.0001	6.16 (2.37 – 16.04)	<0.0001
Neutrophils >6000/μL	14/114 (12%)	55/135 (41%)	<0.0001	4.09 (1.48 – 11.3)	0.007
B-cells <100/μL	18/114 (16%)	63/135 (47%)	<0.0001	3.6 (1.3 – 9.99)	0.01
NK cells <150/μL	32/114 (28%)	54/135 (40%)	0.05	3.14 (1.21 – 8.13)	0.02

Distribution of normal PB B-cell and plasma cell subsets through life

PRE-GERMINAL CENTER B-CELLS IN BLOOD OF MBL¹⁰ VS NON-MBL PATIENTS DURING AND AFTER COVID-19



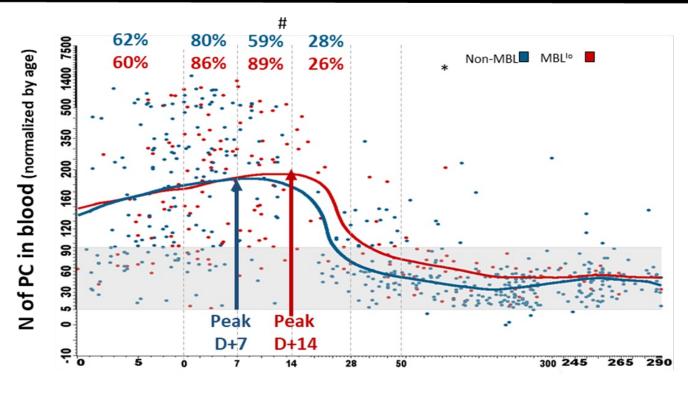
Delayed plasma cell peak in blood of MBL^{lo} vs non-MBL patients during COVID-19 is associated with decreased pregerminal center B cell counts



PLASMA CELL KINETICS IN BLOOD OF MBL^{IO} VS NON-MBL PATIENTS DURING AND AFTER COVID-19

Subsets of plasma cells by IgH subclass Maturation-associated subsets of plasma cells

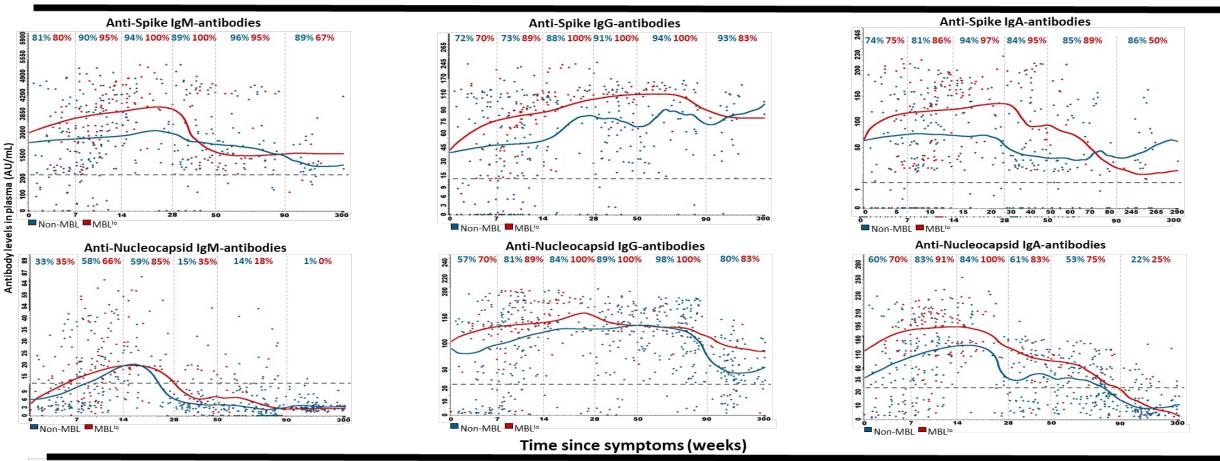
Time since onset of symptoms (weeks)



Delayed plasma cell peak in blood of MBL^{lo} vs non-MBL is at the expense of more mature IgG1, IgG3 and IgA1 PC

Oliva-Ariza et al, Am J Hematol, 2023

MBL^{Io} vs non-MBL (HOSPITALIZED) COVID-19 PATIENTS: Plasma cell response in blood



Time since symptoms (days)

Increased frequency of MBL in (more) severe COVID-19 is associated with delayed plasma cell peak in blood during active COVID-19

ANTI-SARS-CoV-2 ANTIBODY LEVELS IN MBL^{IO} VS NON-MBL PATIENTS DURING AND AFTER COVID-19

Delayed plasma cell peak in blood of MBL^{Io} vs non-MBL patients during COVID-19 is associated with decreased pregerminal center B cell counts

Concluding remarks

- The prevalence of MBL^{lo} in the general population is high, increases with age and shows a slight prevalence in men vs women similarly to MBL^{hi} and CLL.
- MBL^{lo} clones persist and frequently increase in size in blood, but with a low rate of progression to MBL^{hi} and CLL in the medium-term (higher among CLL family members than in sporadic cases). However, the small MBL^{lo} clones are not genetically stable and acquire altered profiles similar to MBL^{hi} cases.
- Despite its low rate of leukemia transformation, MBL^{lo} is associated with a significantly greater susceptibility to (more) severe infections and (lymphoid) cancer.
- A strong association between MBL^{lo} and more severe COVID-19 exists, which is associated with decreased numbers of pre-germinal center B cells and a delayed plasma cell peak, but significantly greater (transient) SARS-CoV-2 antibody levels in response to both infection and vaccination.
- The precise the above, the ontogenic pathways and the mechanisms of immune dysregulation in MBL^{Io}, still remain poorly understood.

CLL Conference

AKNOWLEDGEMENTS

CIC, Department of Medicine IBSAL & Cytometry Serv (USAL), Salamanca, Spain

> J Almeida I Criado W Nieto

A Rodríguez Caballero

B Fuentes-Herrero

G Oliva-Ariza

A López Fernández

ML Sánchez-García

CE Pedreira

JI Sánchez-Gallego

ML Gutiérrez

C Prieto

B Gomulka

A ORFAO

CIC, Salamanca, Spain

M Vicente

M Garrido

E Santos

X Bustelo

Primary Health Care Area of Salamanca (SACYL), Salamanca, Spain

JA Romero Furones P Fernández Navarro Primary Health Care Group of Salamanca for the study of MBL

(40 medical doctors from the Primary Health Care Area of Salamanca)

ICO (Institut Catala d'Oncologia) Barcelona, Spain

> D Casabonne Y Benavente

University Hospital of Salamanca, Salamanca, Spain

MB Muñoz Criado (Microbiology) M Alcoceba (Hematology) M García-Álvarez (Hematology)

M González Díaz (Hematology)

N Puig (Hematology)

T Contreras (Biochemistry)

Fondazione Centro San Raffaele, Italy

G Tonon

5 Bonfialio

F Giannese

M Morelli

5 de Petris

D Cittaro

Univ. Vita-Salute San Raffaelle, Italy

P Ghia

M Frenquelli

L Scarfò

F Gandini

Leeds Cancer Centre, UK

A Rawstron J Senior

DGSP-JCyL, Spain

R Álamo

SOTON, UK

F Forconi

K Potter

B Sale

5 Lanham

J Strefford

J Batchelor

F Stevenson

Univ. Coimbra, PT

A Paiva

AS Ribeiro

CM Cabral

5 Morgado

AC Gonçalves

AR Saúde do Centro IP. PT

L Meneses-de-Almeida

D Vieira

JP Pimentel

S Lourenço

EPM-UNIFESP, Brazil

M Yakamoto

CAMPUS DE EXCELENCIA INTERNACIONAL

Financial support

THANK YOU